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Scaling theory for the optical properties of thick percolative 
metal-insulator films 
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DSP?&MLI of Physics and Astronomy, Raymond and Beverly Sack(er Faculty of Exact 
Sciences, Tel Aviv University, 69978 Tel-Aviv. brael 

ReQived 9 May 1994, in Knal form 31 August 1994 

Abstract. The 10 scaling approach for the optical propexties of semicontinuous metal films is 
generalized to thick (3D) percolative films. Model calculations demonstrate that the scaling model 
is qualitatively different from any effective medium approach, and should be used whenever the 
inhomogeneity length scale is h g e r  than the optical one. 

The optical properties of composite materials are normally described by effective medium 
models. based on the static approximation (see [I] and references therein). It is now well 
known that these approximations are invalid over a wide range of the filling factor p .  
both above and below the percolation threshold p s  (the metal-insulator transition). The 
reason for this discrepancy is the divergence of the percolation correlation length $, which 
becomes larger than all other relevant length scales. In contrast, the optical properties of (2D) 
semicontinuous metal films, near the percolation threshold, are well described by a scaling 
based model [1,2]. In this work we present the generalization of the 2D scaling model to 
thick percolative films, where 'thick' is defined below. This model should be applicable to 
metal-dielectric cermets, such as co-evaporated or co-sputtered Ag4i02, Au-Al208, and 
other composites. 

The scaling model for the optical properties of 2D semicontinuous metal films consists 
of three main assumptions. (i) The optical response of a percolative film is determined by 
its fractal geometry. Therefore, the relevant length scale L(o)  is much smaller than the 
optical wavelength A = 2ncjo and is determined by the anomalous diffusion relation [3] 
L(o)  cx o-''(*+'), where l j ( 2  + 0) N 0.35 in 2D and 0.27 in 3D. (ii) One cannot define an 
effective dielectric constant if L(o) c {. Instead, the optical responses of different areas 
of linear size L(w) should be averaged, using finite-size scaling and a wide distribution of 
the local (complex) dielectric constant. (iii) The contribution of DC insulating regions is not 
negligible in the AC case due to intercluster capacitance. 

We start with the identification of the optical length scale L ( o )  and its meaning for 
thick (3D) films. Similar to the 20 case, the AC current correlation length is given by the 
distance an electron may diffuse over a time period ljo. At low frequencies (normally in 
the IR and FIR regimes) the intercluster and intracluster capacitive impedance is larger than 
the metallic impedance, hence this length scale is determined by, the anomalous diffusion 
relation in large metallic clusters. In the 3D case, this length scale is also a lower bound 
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for the AC current penetration depth. We emphasise that this length scale should not be 
confused with the skin depth, which measures the penetration depth of the electric field in 
a homogeneous medium. In some sense, L(o)  is analogous to the anomalous skin effect. 
where the intrinsic properties (the mean free path) dominate the actual penetration depth. 
In this stage the term ‘thick‘ becomes obvious: a film is thick and 3D if its thickness d is 
larger than Z(w). Note that this condition is much weaker than the usual definition for a 3D 
percolative film: d t f .  Since the local AC current is uniform over a length scale L(o), the 
local (complex) AC conductivity should be calculated over the same length scale. We thus 
divide the film into cubes of linear size Z(o), and calculate the complex AC conductivity 
of each cube. Similar to the 2D case, the average conductivity of the conducting and 
the insulating regions is determined by finite-size scaling, and a wide bimodal distribution 
function is used to describe all possible (complex) conductivities. In the ZD case the optical 
response (namely R, T and A) of each square of linear size Z(w) is calculated separately, 
and the film response is given by averaging these different contributions. In the 3D case, 
each square is replaced by a pile of cubes (a column) of area Z(w) x L ( o )  and thickness 
d. The optical response of such a column depends on all the cubes of linear size L(o) and 
their order. The optical response of the entire film is the average of the contributions of all 
possible column configurations with their appropriate weights. 

The average conductivity of a good conductor-bad conductor mixture of linear size 
L << f ,  near the percolation threshold of the good conductor, is given by [4] 

where U,,, and ui are the complex conductivities of the good and the bad conductors, 
respectively, y and s are their critical exponents, and U is the critical exponent of the 
percolation correlation length f = <o(p - p,)-”.  All the lengths are measured in units of 
the typical grain size a ,  thus both Z and < are dimensionless. The scaling function F(z )  
has two limiting forms for [zl <( 1, depending on the existence of a continuous path of the 
good conductor 14.13: 

A1 + A ~ z  
A32 4- A4zZ 

F ( z )  = P > Pc 

P < Po 

The critical exponents appearing in (1) have universal values that depend only on the 
dimensionality of the system. In three dimensions U = 0.88, f i  = 2.0 and s = 0.73, for 
both site and bond percolation [5 ] .  Coninuum percolation may cause some changes in these 
values, but it is normally assumed that they are universal. The non-universal coefficients, 
such as (0, pc,  LO and AI-4 depend on the details of the microgeometry. Their values cannot 
be determined from the scaling theory of percolation and must be adjusted to the particular 
system in question (see [l]). For example, pc  may be measured by the DC resistance, and 
eo is roughly the grain size. LO and A1-4 are prefactors of order unity and are normally 
adjusted by fitting the experimental data. We note, however, that these prefactors are not 
free parameters of the model and could thus be measured independently. 

On a length scale L < E ,  the sample appears highly inhomogeneous, hence the local 
AC conductivity has large fluctuations. In particular, both metallic-like and dielectric- 
like conductivities are present, depending on whether a (locally) conducting path exists 
or is absent. This may be described by a bimodal distribution function P(u),  where 
(2a) and (2b) are the average conductivities of the metallic-like and the dielectric-like 
regions, respectively. For p # pc the conductivity distribution function also depends on 



Opticul properties of thick percolative films 10609 

L, hence P = P(a,  L / t ) .  As long as L << t> P(u, L/<) c P(a, 0). For L >> 5 
P(u, L / t )  x 6(u - a&)), since the sample appears homogeneous on length scales 
larger than the percolation correlation Icngth. The acrual shape and width of P(a)  were 
numerically studied for the 2D DC case, and found to be universal [SI. For 3D P ( u )  should 
still be universal, but could differ from the 2D function. The general conclusions of the 
following discussion do not depend on a particular choice of P(a) .  However, the actual 
values of R, T and A do depend on this function, hence P(u)  for 3D is needed in order to 
fit experimental daia Alternatively, optical data might be used in order to estimate P(u) .  

The local dielectric constant of an L x L x L cube of local AC conductivity U is given 
by E = 1 + i4ria/w. Following the 2D scaling model, the optical response of such a cube 
is given by the response of a thin (homogeneous) film having the same dielectric constant. 
This is fully determined by its characteristic matrix [6] 

where g = (with the convention of negative imaginary part, i.e., the time dependence 
is e'"'), ,!? = kd, k is the complex wavenumber and d the film thickness (d = L in this 
case). The characteristic matrix of a column of N cubes is given by 

and the reflected and transmitted amplitudes are 

r = k o h l  + g m d  - h 1 +  g , m z ) l / k o ( m ~ ~  + g m d  + h+ g , m ) l  

= ZgaeWhDlh / [ ~ O ( ~ I I  + g,md + (m + g , m d I .  

Here go, g, represent the vacuum and the substrate refractive indices, respectively, and 

The optical response of the entire film is calculated by averaging the optical contributions 
of all possible column configurations, with proper weights. Since no spacial correlations 
are considered, and since L Q A, it is possible to average intensities rather than amplitudes 
(similar to the 2D scaling model). This simplification should be valid as long as non-specular 
scattering is negligible. The optical reflectance is thus given by 

D = N L  is the column (film) thickness. ~~ 

with similar expressions for the transmittance T and the absorptance A. Here P ( u )  
P ( o ,  L/<) is the conductivity bimodal distribution function, and r(q, cfz, . . . , UN) is the 
reflected amplitude. of a column of N cubes with complex conductivities a], q, . . . ,UN 

respectively. 
For a semi-infinite film, there is an infinite number of possible configurations. Even for 

finite thickness, the complexity of this procedure rapidly increases with increasing thickness. 
However, this restriction is practically unimportant since only a few layers close to the film 
surface are significant, while the contribution of deeper layers may be well approximated 
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by an effective medium approximation (EMA). This is especially true in the case of metal- 
insulator mixtures, where both reflectance and absorptance are non-negligible. 

The optical reflectance, transmittance and absorptance of a 3D percolative Drude metal 
film are shown in figure 1, as calculated by the above method, for p = pc, d = nL(w) 
with n = 1, 2, 3, 4, 5, and A = 10, 40, 70, 100 pm. The dielectric AC conductivity is 
ui = iejwco = iO.Olo, CO being the intercluster capacitance per unit length, and all other 
parameters are similar to those of [2]:  A I  = A2 = I, Aj  = A4 = 0.75, = 100 A 
and Lo = 4. For comparison, an effective medium type calculation is also shown. The 
term ‘effective medium approximation’ (EMA) stands here for any model that replaces the 
inhomogeneous media by an effective homogeneous one, taking into account the geometry 
and the dielectric constants of the constituents. We also assume that the effective dielectric 
constant does not depend on the film thickness. For example, in the Bruggemann BMA [9], 
the effective dielectric constant depends on the filling factor p and the depolarization factor 
L, which should reflect the actual shape of the grains (L = f for spheres). Since any EMA 
calculates the effective dielectric constant, or refractive index f f , ~  = n + ik, where n,  k do 
not depend on the film thickness d, we have selected i,&) values so that the 10 and 40 pm 
data intersect the scaling results at d = 2L(w),  and the 70 and 100 pm data at d = 3L(w) .  
Therefore. our comparison with the EMA does not depend on any particular model for 
the effective dielectric constant. The optical transmittance in figure 1 rapidly decreases 
with increasing thickness, as expected for a homogeneous film. Indeed the scaling and 
the effective medium results are almost identical. In contrast, the optical reflectance and 
absorptance show pronounced discrepancies, where the EMA results have stronger thickness 
dependence. In particular, the BMA absorptance has much steeper curvatures with respect 
to the film thickness. 

Increasing the d i e l e c ~ c  A c  conductivity uj = i 0 . h  yields similar results in general 
(figure 2 ) ,  with the exception of the 10 pm data: the optical reflectance is maximal at 
d = 4L(w), and the absorptance has a shallow minimum. These are absent from the 
EMA curves if n < k (metallic-like). Selecting a dielectric-like effective dielectric constant, 
n k, the above qualitative behaviour is recovered (figure 3). The reflectance is maximal at 
d = h/4n due to constructive interference, and the absorptance is minimal at this thickness. 
Quantitatively, however, the EMA results are different from the scaling ones, where the 
interference effect in the latter case is much weaker. Indeed a distribution of local dielectric 
constants tend to wash out any interference effects. The existence, or absence, of interference 
fringes is thus a key feature in determining the physical significance of an effective dielectric 
constant. 

In the above examples, the optical transmittance is fairly well described by the EMA, 
while the absorptance shows the largest discrepancies (note that the scaling 10 pm T in 
figures 2 and 3 is between the metallic-like and the dielectric-like EMA curves, but very 
close to both of them). It is interesting to understand why the scaling approach is more 
important for A than for T .  In a homogeneous medium T rapidly decreases with increasing 
thickness due to the exponential term e-d/6 where 6 is the skin depth. The same trend 
is also expected in the scaling approach the light is either absorbed or reflected when 
travelling through ’highly absorbing’ or ‘highly reflecting’ regions, respectively, and the 
probability of a ‘higher transparent’ column rapidly decreases with increasing thickness. 
In contrast, the optical absorptance of an homogeneous film does not follow a monotonic 
thickness dependence: a very thin film is transparent and non-absorbing, while a thick film 
has high reflectance and low absorptance. At intermediate thicknesses both the reflectance 
and the transmittance are low, yielding large optical absorptance. For a Drude metal at low 
frequencies (mid- and far infrared) the absorptance reaches 50% in this regime [I]. The 
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Figure 1. The reflectance, transmittance and absorptance of a metal-insulator film at pc 3s 
calculated by the 30 scaling model and by'an effective dielecuic constant, versus the film 
thickness. The scaling model is applied for one to five layen at the wavelengths 10,40,70, and 
100 pm. The complex effective refrnctive indices are 0.66 t i2.84. 1.22 + i4.54, 1.76 + i5.08 
and 2.04 + i5.54, respectively. 
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enhance absorptance in this case is due to multiple reflectance inside the film, hence it 
strong thickness dependence. Since coherent effects aTe suppressed in the scaling approach 
the absorptance is also expected to be modified. 

For oblique incidence the 3D scaling model becomes much more complicated since thi 
transfer matrix method cannot be used: the incident and the reflected beams have differen 
paths. Therefore, one should explicitly calculate the path of each multiply reflected beam, 
and average over all possible configurations for each path. An illustration of a possible 
path of an s polarized wave is shown in figure 4, where the light beam is partially trapped 
(localized) between randomly dispersed highly reflecting regions. Note that such a path 
is not possible at normal incidence, since the beam travels along the same path after each 
internal reflection. It is thus expected that the absorptance of an oblique s polarized wave 
should be enhanced in comparison with the normal incidence absorptance. 

Figure 4. A schematic drawing of cubes of l inea size L(ril), and a possible path of an s polarized 
oblique beam, illustrating pariial light localization. 

In conclusion, we have generalized the scaling model for the optical properties of 
semicontinuous metal films to thick films, and demonstrated some typical results of this 
model. It is concluded that the transmittance of thick percolative films may be reasonably 
described by an effective dielectric constant, in contrast with the optical absorptance and 
reflectance. Experimentally, the 3D scaling approach could be confirmed by the following 
observations: (i) the effective dielectric constant is thickness dependent; (ii) if the film 
is not tno thick, its effective dielectric constant depends on the substrate as well as on its 
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thickness [7] (i.e, the same film on different substrates yields different €a); (iii) interference 
effects are very weak, showing the intrinsic inhomogeneity and (iv) the optical absorptance 
of an oblique s polarized wave is higher than the normal incidence absorption. Finally, the 
optical response may be fitted by this model, where the weak thickness dependence allows 
interpolation for arbitrary film thicknesses. 
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